
INFLUENCE OF ADSORPTION ON THE PROPERTIES OF 

DISPERSION IN UNDISSOCIATED SOLUTIONS 

Yu. A. Buevich and S. V. Sizaya UDC 541.1.8.04 

The thermodynamic functions of dispersion in nonelectrolyte solutions are calcu- 
lated, taking account of the sorption of solute molecules at the particle sur- 
faces; the influence of this effect on the behavior of dispersion is discussed. 

The importance of investigating the equilibrium properties of phases and components of 
finely disperse suspensions and colloids arises, in particular, in that the character of 
their dependence on the physicochemical parameters may influence the course of various non- 
equilibrium processes there. For example, the hydraulic characteristics - and hence the ef- 
fective rheological parameters - of disperse flows depend strongly on the distribution of 
suspended particles, which is established as a result of competition between the action of 
some regular forces leading to migration of the particles and the development of inhomoge- 
neity and the influence of gradient diffusion of the particles, leading to smoothing of this 
inhomogeneity [i]. 

Diffusional effects may be described by introducing a special thermodynamic force act- 
ing on the particles, proportional to the gradient of their chemical potential [i, 2]. 
Therefore, change in this gradient leads to restructuring of the particle-concentration 
field and hence to change in hydraulic characteristics of the disperse flow. This is asso- 
ciated with the possibility [I] of active intervention in such flows by introducing surfac- 
tants, polymers, and so on in the liquid phase. 

In the present work, the problem is considered for the situation in which the liquid 
phase of the dispersion is a dilute solution of a single undissociated material which is 
capable of adsorption. The particles are assumed to be identical spheres; their volume con- 
centration in the mixture may be large, so that the steric interaction due to excluded-vol- 
ume effects are important. In addition, molecular surface interaction between particles is 
possible, usually leading to mutual attraction. 

Consider a system consisting of np spheres of radius a andvolume Vp = (4~/3)a~; n o 
solvent molecules of volume v0; and n molecules of some material (volume v) distributed be- 
tween the solution and the surface phase, corresponding to an adsorptional layer at the 
particles (n s and n a molecules, respectively; n s + n a = n). Without loss of generality, 
n may be understood to be the number of particles and molecules in unit volume of the mix- 
ture. Obviously 

p=vpnvq-vn=, t - - p = ~ n o q - v n ~ n o  (1) 

( t h e  approximate  e q u a l i t y  i s  fo r  a d i l u t e  s o l u t i o n ) .  

Suppose t h a t  t he  s u r f a c e  c o n c e n t r a t i o n  of  the  p o s s i b l e  a d s o r p t i o n  s i t e s ,  assumed to  be 
identical for the sake of simplicity, is F; then the total number of such sites per unit 
volume is 

N = 4~a2npF = 3Fp/a. (2) 

Taking account of the multiplicity of methods of distributing the adsorbed molecules 
over the accessible sites, the following expression may be written for the state function of 
the system 

Nt 
z = zln~=0 (z~% 

n~! (N --  n~)! 
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where the first factor on the right-hand side corresponds to the same system without adsorp- 
tional layers, and z a is the state function for one adsorbed molecule. Hence, for the free 
Helmholtz energy of the system, using the Stirling formula 

F = -- kT In Z = -- kT in Z1na=0 -- kTn a In z~ -- 
(3) 

- -  k T  [ N  In N - -  na In na - -  ( N  - -  n~) In ( N  - -  n~)].  

Since, by hypothesis, the volume of the system is unchanged on adsorption of some of 
the solute molecules, the chemical potentials of the components of the system in isothermal 
conditions are equal to the partial derivatives of F with respect to the corresponding n. 
Taking account of Eqs. (2), it follows from Eq. (3) that 

~p = ~pl,~a= o + 4 ~ a 2 r k T  In N -  n~ 

~o := P-oln,~=o, ~ = ~l.a=o, (4 )  

~= = - - k T l n  za + k T  In na 
N - -  n= 

(on  d i f f e r e n t i a t i o n ,  t h e  r e l a t i o n  n s + n a = n i s  u l t i m a t e l y  n o t  i m p o s e d ) .  

To d e t e r m i n e  t h e  f i r s t  t e r m s  on t h e  r i g h t - h a n d  s i d e  in  Eq. ( 4 ) ,  i t  i s  s i m p l e s t  t o  c o n -  
s i d e r  t h e  d i s p e r s i o n  o f  np p a r t i c l e s  in  s o l u t i o n  w i t h  a r e l a t i v e  c o n c e n t r a t i o n  n s / n 0  u s i n g  
t h e  me thod  o f  [ 1 ] .  I f  t h e r e  i s  no m o l e c u l a r  a t t r a c t i o n  o f  t h e  p a r t i c l e s ,  i . e . ,  o n l y  e x -  
c l u d e d - v o l u m e  e f f e c t s  a r e  p r e s e n t ,  t h i s  p r o b l e m  was a c t u a l l y  s o l v e d  in  [1] on t h e  b a s i s  o f  
a s e m i e m p i r i c a l  e q u a t i o n  o f  s t a t e  o f  a d e n s e  g a s  o f  r i g i d  s p h e r e s  in  t h e  fo rm p r o p o s e d  in  
[3, 4] 

p p , ( p )  p l + p + p 2 - - p S  
= --- kT. 

vp (1 - -  pp 

The attraction of the particles may in principle be taken into account using the well- 
known Braut method, considering the equation of state 

P = p* (p) -- Ap 2, 

where A is a parameter characterizing the intensity of attraction, which may be expressed 
as some integral of the interaction potential and the binary correlation function for rigid 
spheres [4]. The calculation of the thermodynamic Gibbs potential of the system in this 
case is completely analogous to that in [i] ; for the situation in which the effective attrac- 
tion is due to the dipole interaction between the particles, see [5]. 

Omitting the details of the calculations, the result is 

~pl%=o = ~p + k T  In p - -  p + p (1 - -  p)2 ~zp (2 - -  p) , 

[ l + p + # - - p  3 ] (5) 
~ o l % = o = f o - - k T  vo p __ ~p , v~ (l - -  pp 

[ I + p + p ~ - #  ] ~sl%=0=fs--kT v P - -  r , 
vp (1 - -  p) 3 

where a = v A/kT is a new dimensionless parameter characterizing the interparticle attrac- 
P 

tion. For a dilute solution, taking into account that no = vo1(l -0), it follows that 
o 

[o = ~o - -  leT (nJno)  = t*~ - -  kTvoc~, 
(6) 

[ ,  = * (T) + k T  In (n,/no) = * ( T )  + k T  In (VoC,), 

where •(T) is practically independent of the pressure, according to the theory of solutions 
[6]; c s = (i - p)-In s plays the role of the numerical concentration of the solution; B~ 
corresponds to pure solvent and p~ to the particle material. 

To determine the degree of filling of the adsorptional layers �9 = na/N, the free en- 
ergy in Eq. (3) must be a minimum with respect to change in the degree of adsorption ~ = 
na/n under the condition that n s + n a = n. Hence 
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1 
In --i - -  ~ In z~ -- --kT ~8[%=0 = O, 

which expresses the equality of the chemical potentials of the solute molecules in the solu- 
tion and in the surface phase, from which, taking account of Eqs. (5) and (6) and the nota- 
tion x(T) = -kTln Za, the equation of the adsorption isotherm corresponding in fact to Lang- 
muir theory follows 

1 - - z  ~ v v ( l - - p )  3 

w h e r e  U = ~ - X i s  t h e  e n e r g y  o f  s p e c i f i c  a d s o r p t i o n .  I t  i s  e v i d e n t  f r o m  Eq.  ( 7 )  t h a t  i n -  
c r e a s e  i n  p a r t i c l e  c o n c e n t r a t i o n  i n  t h e  s y s t e m  l e a d s  t o  w e a k e n i n g  o f  t h e  e q u i l i b r i u m  a d s o r p -  
t i o n  o f  t h e  m o l e c u l e s  a t  s m a l l  a ,  a s  f o r  t h e  a d s o r p t i o n  o f  i o n s  f r o m  e l e c t r o l y t e  s o l u t i o n s  
[7]. At large a, some intensification of adsorption is seen. However, in view of the pres- 
ence of a small factor in the exponential, it follows from Eq. (7) that these effects are 
very weak. Note that these discussions take absolutely no account of the possible depen- 
dence of ~ on the degree of filling of the adsorptional layers; construction of the corre- 
sponding theory is very complex. 

The final expressions for the chemical potentials following from Eqs. (4)-(6) are 
o 

~v ~p 8 - -  59 ~p (2 - -  p) -J- 4~aZr In ( 1 - -  x), k ~ =  k ~  ~ l n p - p } - p  ( l - - p )  2 

(8)  
~o _ ~ Vo [ l + p + p Z - - p  3 ] 

kT kT v~ P ( l - - p )  3 - - ~ P  ' vp 

kT kT vv (1 -- p) 8 

where the last formula corresponds to solute molecules, regardless of the phase in which 
they are found. Using Eq. (8), all the other thermodynamic functions of the given system 
may be found by the usual rules. 

The results obtained offer the possibility of determining all the standard character- 
istics of the concentrated colloidal solution: osmotic pressure, temperature and pressure 
shifts, and phase transitions of liquid phase due to the presence of particles, the equili- 
brium conditions of colloids in different liquids, etc. This leads to the corresponding 
generalization of the distribution laws - van't Hoff, Raoult, Henry, and cryoscopic [6]. 
For example, consider the equilibrium of colloidal solutions of the same particles with con- 
centrations Pl and P2 separated by a barrier which is only permeable to these particles. 
Equating the chemical potentials of the solvent and solute on both sides of the barrier, it 
is found that 

c~ - -  e~l = % [exp (ov/vp) - -  1] ~ ~ %  (vtvp), 

P2 - -  Pl ~ ~ ( 1 + VCsl)(kT/vv), ( 9 ) 

1 + P2 "-~ P2 - -  92 _ _  ~92 - -  91 
= 92 (1 - -  pz)~ ( 1 - -  91) 3 

determining, in particular, the osmotic pressure of the colloidal solution. Analogously, it 
is simple to consider the equilibrium in the presence of a barrier permeable only to the 
solvent. 

The derivative 8Dp/Sp is now calculated taking account of Eqs. (7) and (8); simple 
transformations give 

O~V_ = kT ( l + 4zla2F V - x P ) • 
ap vv l + x  l--p (i0) 

[ 8 - - 5 P  ~ p ( 2 - - p ) ]  
a lno--o--o (l--p? 

• dp 

X : V o C s e x p  exp ----p --~p . 
vv (1 -- p)s 
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The condition of thermodynamic stability of the colloidal solution demands that this deriva- 
tive be positive [6]. It is readily evident from Eq. (i0) that stability loss sets in when 
the total derivative with respect to p in Eq. (i0) is zero. It is simple to show that this 
is possible when e ~ 10.75, i.e., with sufficiently strong attraction between the particles. 
Then the equation 8~p/89 = 0 has two roots p, depending on e. It also follows from Eq. (I0) 
that the adsorption of the solute molecules has no influence on the loss of thermodynamic 
stability of the system, and hence on the onset of stratification of the colloid into two 
phases of different concentration (again, no account is taken here of the possible depen- 
dence of e on the state of the adsorbed layers at the particles). 

The coefficient of gradient Brownian diffusion of the particles and the thermodynamic 
force tending to equalize the particle concentrations in the disperse flows are proportional 
to the derivative in Eq. (I0). Therefore, it is clear that the influence of adsorption of 
material introduced in the flow may be significant if the degree of filling of surface 
layers of the particles is close to unity, which is quite possible with sufficiently high 
adsorptional energy U. Considering only this case, for the sake of simplicity, it is evi- 
dent that the ratio of diffusion coefficients of the particles in the system in the presence 
and absence of adsorption may be written in the form 

D ~p v 
~ ~  1 + ~ ,  ~ = 4 ~ a ~ F  ( i i )  Dlna=o 1 - - p  vp 

Thus, the introduction of impurity capable of adsorption in a flow should lead to the 
intensification of diffusional processes and hence to weakening of the concentrational in- 
homogeneities in the flow. This effect is intensified with increase in concentration of the 
colloid. In order of magnitude, F ~ s when Vp = (4~/3)s 3, i.e., T ~ 4zs Hence it fol- 
lows that the effect is very weak in the case of low-molecular impurities in systems with 
relatively large particles. However, it intensifies rapidly on passing to high-molecular 
impurities and finely disperse colloidal or micellar solution. If long-chain wetting ma- 
terials and polymer additives are used, the given effect may be considerable in colloidal 
solutions with a ~ 0.i-i Bm. 

Note that, in the simple theory here proposed, simple assumptions are made regarding 
the dilution of the molecular solution, the monodispersity and spherical form of the parti- 
cles, the absence of a dependence of ~ on ~, the slight influence of adsorption and solva- 
tion of the particles on their size (allowing, in particular, the dependence of 9 on n a in 
Eq. (i), which is important in calculating chemical potentials, to be neglected here), and 
so on. Therefore, the results obtained must be regarded as qualitative or approximate, in 
no sense exhausting the complexity of the given problem. However, they are adequate in the 
sense that they offer the possibility of suggesting promising directions for further inves- 
tigation, including experimental. 

NOTATION 

a, particle radius; c, numerical concentration; D, diffusion coefficient; F, Helmholtz 
free energy; k, Boltzmann constant; N, number of adsorption sites; n, number of particles 
or molecules per unit volume; p, pressure; T, temperature; U, energy of adsorption; Z, z, 
state functions; ~, parameter characterizing the attraction between particles; F, surface 
concentration of adsorption sites; D, chemical potential; v, degree of adsorption; p, vol- 
ume concentration of particles; E, degree of filling of surface layers; X, ~, characteristic 
energies. Subscripts: p, particle; 0, solvent molecule; s, a, solute molecule in solution 
and in adsorbed phase, respectively. 
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